Skip to main content

Quadratics: Graphing Tips

 

Note whether the parabolas represented by the following equations open upward or downward and if they are narrow, wide, or "normal."

  1. $y=x^2+9x-8$
  2. $y=2x^2+5+3$
  3. $y=-.5x^2+2x-4$
  4. $y=\dfrac{1}{3}x^2+5x-2$
  5. $y=-\dfrac{1}{8}x^2+1x-.5$

Draw a quick sketch of the following equations on a coordinate plane. 

  1. $y=2x^2+6x-4$
  2. $y=-3x^2+5+3$
  3. $y=\dfrac{1}{2}x^2+8x-1$
  4. $y=(x-4)^2+5$
  5. $y=-2(x+3)^2-1$

Match the following equations to the graphs below:

 

  1. $y=-\dfrac{1}{2}x^2+2x+3$
  2. $y=x^2+2x+1$
  3. $y=2x^2-2x+4$
  4. $y=-3x^2+2x-2$

Image removed.