Skip to main content

Quadratics: Graphing Tips

 

Note whether the parabolas represented by the following equations open upward or downward and if they are narrow, wide, or "normal."

  1. $y=x^2+9x-8$: upward, normal width
  2. $y=2x^2+5+3$: upward, narrow
  3. $y=-.5x^2+2x-4$: downward, wide
  4. $y=\dfrac{1}{3}x^2+5x-2$: upward, wide
  5. $y=-\dfrac{1}{8}x^2+1x-.5$: downward, wide

Draw a quick sketch of the following equations on a coordinate plane. 

Parabola sketches
  1. $y=2x^2+6x-4$ 





     
  2. $y=-3x^2+5x+3$ 






     
  3. $y=\dfrac{1}{2}x^2+8x-1$ 






     
  4. $y=(x-4)^2+5$ 







     
  5. $y=-2(x+3)^2-1$ 






     

 

 

 

Match the following equations to the graphs below:

 

  1. $y=-\dfrac{1}{2}x^2+2x+3$: D
  2. $y=x^2+2x+1$: A
  3. $y=2x^2-2x+4$: B
  4. $y=-3x^2+2x-2$: C