Quadratics: Graphing Tips
Note whether the parabolas represented by the following equations open upward or downward and if they are narrow, wide, or "normal."
- $y=x^2+9x-8$: upward, normal width
- $y=2x^2+5+3$: upward, narrow
- $y=-.5x^2+2x-4$: downward, wide
- $y=\dfrac{1}{3}x^2+5x-2$: upward, wide
- $y=-\dfrac{1}{8}x^2+1x-.5$: downward, wide
Draw a quick sketch of the following equations on a coordinate plane.
- $y=2x^2+6x-4$
- $y=-3x^2+5x+3$
- $y=\dfrac{1}{2}x^2+8x-1$
- $y=(x-4)^2+5$
- $y=-2(x+3)^2-1$
Match the following equations to the graphs below:
- $y=-\dfrac{1}{2}x^2+2x+3$: D
- $y=x^2+2x+1$: A
- $y=2x^2-2x+4$: B
- $y=-3x^2+2x-2$: C