Skip to main content

Multiplying Radicals

Find the products. Simplify answers.

  1. $\sqrt{2}\times \sqrt{20}=\sqrt{40}=2\sqrt{10}$
  2. $\sqrt{8}\times \sqrt{3}=\sqrt{24}=2\sqrt{6}$
  3. $\sqrt{35}\times \sqrt{5}=\sqrt{5\times 7}\sqrt{5}=5\sqrt{7}$
  4. $\sqrt{4}\times \sqrt{56}=2\times 2\sqrt{14}=4\sqrt{14}$
  5. $\sqrt{64}\times \sqrt{8}=8\times 2\sqrt{2}=16\sqrt{2}$
  6. $\sqrt{18}\times \sqrt{6}=3\sqrt{2} \times \sqrt{6}=3\sqrt{12}=6\sqrt{3}$
  7. $\sqrt{49}\times \sqrt{4}=7\times 2=14$
  8. $\sqrt{5}\times \sqrt{50}=\sqrt{5} \times \sqrt{25 \times 2}=\sqrt{5} \times 5\sqrt{2}=5\sqrt{10}$
  9. $\sqrt{9}\times \sqrt{28}=3 \times 2\sqrt{7}=6\sqrt{7}$
  10. $\sqrt{63}\times \sqrt{7}=3\sqrt{7} \times \sqrt{7}=21$
  11. $\sqrt{5}(2+\sqrt{3})=2\sqrt{5} + \sqrt{15}$
  12. $\sqrt{2}(4\sqrt{2}-7)=8-7\sqrt{2}$
  13. $\sqrt{3}(\sqrt{6}+1)=\sqrt{18}+\sqrt{3}=3\sqrt{2}+\sqrt{3}$
  14. $\sqrt{6}(2+3\sqrt{3})=2\sqrt{6}+3\sqrt{18}=2\sqrt{6}+9\sqrt{2}$
  15. $\sqrt{7}(7-\sqrt{2})=7\sqrt{7}-\sqrt{14}$
  16. $\sqrt{2}(10-10\sqrt{3})=10\sqrt{2}-10\sqrt{6}$
  17. $\sqrt{5}(3\sqrt{6}+\sqrt{2})=3\sqrt{30}+\sqrt{10}$
  18. $\sqrt{7}(\sqrt{7}-2\sqrt{5})=7-2\sqrt{35}$
  19. $\sqrt{2}(4\sqrt{2}-\sqrt{3})=8-\sqrt{6}$
  20. $\sqrt{3}(\sqrt{6}+2\sqrt{2})=\sqrt{18}+2\sqrt{6}=3\sqrt{2}+2\sqrt{6}$