# Absolute Value

The absolute value of a number is the distance that number is from 0.

That means that 3 has an absolute value of 3. As you can see from the number line below, 3 is three units away from 0.

\require{cancel}\eqalign{&0\large{\curvearrowleft \curvearrowleft \curvearrowleft} \normalsize{3}\\\large{\overline{^-10 \text{ }^-9\text{ }^-8 \text{ }^-7\text{ } ^-6\text{ } ^-5\text{ } ^-4\text{ } ^-3\text{ } ^-2 \text{ }^-1 \text{ }}}& \large{\overline {0 \text{ }^+1\text{ } ^+2\text{ }^+3\text{ } ^+4 \text{ }^+5\text{ } ^+6\text{ } ^+7\text{ }^+8\text{ } ^+9 \text{ }^+10}}}

In math, you would write this equation like this: $\mid 3 \mid = 3$

It also means that -3 also has an absolute value of 3.  As you can see from the number line, -3 is also three units away from 0.

\eqalign{&^-3\Large{\curvearrowright \curvearrowright \curvearrowright} \normalsize{0}\\\large{\overline{^-10 \text{ }^-9\text{ }^-8 \text{ }^-7\text{ } ^-6\text{ } ^-5 \text{ } ^-4\text{ }}} &\large{\overline{^-3\text{ } ^-2 \text{ }^-1 \text{ }0 \text{ }^+1\text{ } ^+2\text{ } ^+3\text{ } ^+4 \text{ }^+5\text{ } ^+6\text{ } ^+7\text{ }^+8\text{ } ^+9 \text{ }^+10}}}

In math, you would write this equation like this: $\mid ^-3 \mid = 3$

Both 3 and -3 are 3 units from 0, so they both have an absolute value of 3.

So, not only are absolute values fairly easy to figure out, they are always positive!

• ## Absolute Value

Find the absolute values:

1. $\mid-4\mid=$

2. $\mid9\mid=$

3. $\mid\dfrac{5}{9}\mid=$

4. $\mid-21\mid=$

5. $\mid33.5\mid=$

6. $\mid-100\mid=$

7. $\mid-1\mid=$

8. $\mid18.75\mid=$

9. $\mid29\mid=$

10. $\mid-50\mid=$

11. $\mid-2.3\mid=$

12. $\mid-\dfrac{1}{2}\mid=$

• ## Absolute Value

Find the absolute values:

1. $|3|=$
2. $|-3|=$
3. $|12|=$
4. $|17|=$
5. $|-90|=$
6. $|0|=$
7. $-|13|=$
8. $-|-13|=$
9. $2|-6|=$
10. $-8|-4|=$