Skip to main content

Absolute Value

The absolute value of a number is the distance that number is from 0.

That means that 3 has an absolute value of 3. As you can see from the number line below, 3 is three units away from 0.

$$\require{cancel}\eqalign{&0\large{\curvearrowleft \curvearrowleft \curvearrowleft} \normalsize{3}\\\large{\overline{^-10 \text{  }^-9\text{  }^-8 \text{  }^-7\text{  } ^-6\text{  } ^-5\text{  } ^-4\text{  } ^-3\text{  } ^-2 \text{  }^-1 \text{  }}}& \large{\overline {0 \text{  }^+1\text{  } ^+2\text{  }^+3\text{  } ^+4 \text{  }^+5\text{  } ^+6\text{ } ^+7\text{  }^+8\text{  } ^+9 \text{  }^+10}}}$$

In math, you would write this equation like this: $\mid 3 \mid = 3$

It also means that -3 also has an absolute value of 3.  As you can see from the number line, -3 is also three units away from 0.

$$\eqalign{&^-3\Large{\curvearrowright \curvearrowright \curvearrowright} \normalsize{0}\\\large{\overline{^-10 \text{  }^-9\text{  }^-8 \text{  }^-7\text{  } ^-6\text{  } ^-5 \text{  } ^-4\text{  }}} &\large{\overline{^-3\text{  } ^-2 \text{  }^-1 \text{  }0 \text{  }^+1\text{  } ^+2\text{  } ^+3\text{  } ^+4 \text{  }^+5\text{  } ^+6\text{ } ^+7\text{  }^+8\text{  } ^+9 \text{  }^+10}}}$$

In math, you would write this equation like this: $\mid ^-3 \mid = 3$

Both 3 and -3 are 3 units from 0, so they both have an absolute value of 3.

So, not only are absolute values fairly easy to figure out, they are always positive!

Practice Problems:

  • Absolute Value

    Find the absolute values:

    1. $\mid-4\mid=$

    2. $\mid9\mid=$

    3. $\mid\dfrac{5}{9}\mid=$

    4. $\mid-21\mid=$

    5. $\mid33.5\mid=$

    6. $\mid-100\mid=$

    7. $\mid-1\mid=$

    8. $\mid18.75\mid=$

    9. $\mid29\mid=$

    10. $\mid-50\mid=$

    11. $\mid-2.3\mid=$

    12. $\mid-\dfrac{1}{2}\mid=$

    Answer Key:

Common Core Grade Level/Subject

EdBoost Test: